DEPARTMENT OF MECHANICAL, INDUSTRIAL, AND MANUFACTURING ENGINEERING

Mohammad Elahinia, chair
Mohammed Samir Hefzy, graduate programs director

Graduate students enrolled in the Department of Mechanical, Industrial and Manufacturing Engineering (M.I.M.E.) may pursue the following degree programs:

- Master of Science in Industrial Engineering,
- Master of Science in Mechanical Engineering and
- Doctor of Philosophy in Engineering.

The fields of Mechanical Engineering are very diverse offering opportunities in research, design, product development and manufacturing. Major areas of Mechanical Engineering include aerodynamics, fluid dynamics, solid mechanics, bio-engineering, material sciences, nanotechnology, dynamics, automotive engineering, production and process, machine design, vibrations and control systems, and reliability-based design and optimization. The department features state of the art studies using modern equipment and techniques.

Research Focus Areas

The current research of the department focuses on the following areas:

- **Computational and Experimental Thermal Sciences:** The computational and experimental thermal science research focus group encompasses broad research activities. These include research in such areas as alternative energy, computational fluid dynamics and heat transfer, tribology, flow stability and transition, vortex dynamics, drag reduction, small and medium engine turbines, microgravity flows, thermal systems simulation, biofluid flow dynamics, turbulent boundary layer characterization, experimental methods using hot wire/film anemometry, laser Doppler velocimetry, particle image velocimetry, and flow visualization techniques. **D.R. Hixon** (coordinator), A. Afjeh, S. Cioc, H. Sojoudi, C. Sheng.

- **Solid Mechanics and Design:** The objectives of the solid mechanics and design focus group are to conduct research that will advance the engineering knowledge base and lead to new processes and products in the broad areas of mechanical systems, dynamic systems and control, mechanical behavior of materials and mechanical design. Specifically, the research thrust of this group includes but is not limited to the dynamic behavior and control of mechanisms, machines, mechanical systems, processes, structures and smart material systems, including MEMS, biomechanics, design methodology, fatigue and fracture mechanics, machine dynamics, noise and vibration analysis and control, solid modeling and vehicle dynamics. **R. Rizvi** (coordinator), L. Berhan, M. Elahinia, A. Fatemi, M. S. Hefzy, G. Naganathan, E. Nikolaidis, M. Pourazady, B. Trease, H. Zhang.

- **Materials, Manufacturing and Systems:** The materials, manufacturing and systems focus group emphasizes solving manufacturing problems. Example problems include the development of processes for products, basic understanding of metal forming and cutting, and improvement of the environmental impact of industry. An essential aspect of this group is the blend of practical plant expertise with the benefits of computational technologies, including computer-aided design and manufacturing. Processes are understood from a “hands-on” perspective and expanded through defining theoretical models. Engineering materials are studied throughout their life cycle, from raw material acquisition, product creation and usage, remanufacturing, recycling and final material disposal. Key expertise within this group includes internationally recognized faculty in rapid prototyping, process engineering, grinding and abrasives engineering, facilities planning and modeling, and environmentally conscious manufacturing. **H. Zhang** (coordinator), S. Bhaduri, M. Franchetti, A.H. Jayatissa, I. Marinescu, R. Rizvi, H. Sojoudi.

Degrees Offered

MFGM 8480 Management of Technology

[3 credit hours (3, 0, 0)]

This seminar covers conceptual framework and relevant research studies on technology management. The literature from Technology Management as it relates to the management of product, manufacturing and supply chain technologies will be discussed.

Term Offered: Spring, Fall

MFGM 8490 Supply Chain and E-Business Issues in Manufacturing

[3 credit hours (3, 0, 0)]

This seminar focuses broadly on key issues relating effective management of product, information and financial flows in supply chains. It also relates to E-business practices, and their impact on supply chain design and management.

Term Offered: Spring

MFGM 8510 Supply Chain and Technology Management Analytics

[3 credit hours (3, 0, 0)]

This course focuses on advanced analytical methods and applications in supply chain and technology management. The first part of the course focuses on mathematical modeling and algorithms in supply chain management, while the second part focuses on how to use data to develop business insights and predictive capabilities.

MFGM 8630 Management Science

[3 credit hours (3, 0, 0)]

This course is an applied study of deterministic and stochastic methods of management science. A variety of applications with emphasis on manufacturing and technology management are introduced.

Term Offered: Spring
MFGM 8640 Advanced Management Science
[3 credit hours (0, 0, 3)]
The course introduces students to advanced theory, algorithms, and applications of management science techniques, including dynamic programming, nonlinear programming, game theory, etc. The methods have applications to supply chain management, manufacturing, transportation, marketing, and economics.

MFGM 8650 Stochastic Modeling
[3 credit hours (0, 0, 3)]
This course covers basic principles and methods in applied probability and stochastic modeling. The topics covered in this course include advanced probability theory, stochastic processes, Markov chains, Markov Decision Processes, queuing theory, computer simulation, etc. Applications of these techniques in supply chain management, manufacturing, transportation, and finance are introduced.

MFGM 8660 Qualitative Research Methodology
[3 credit hours (0, 0, 3)]
This course explores the use of qualitative methods within the fields of Information Systems and Operations Management. The seminar discusses the different qualitative methods that include Case Study, Ethnography, and Grounded Theory. In addition, we examine the differences between interpretive and positivist approaches using qualitative methods. This course covers research design and the various techniques in analyzing qualitative data. The course includes a discussion about mitigating bias in the areas of data collection and analysis.

MFGM 8670 Special Topics in Research Methods
[3 credit hours (0, 0, 3)]
This course focuses on contemporary research methods within the fields of manufacturing and technology management, including Operations and Supply Chain Management, Information Systems, etc. The specific topic on contemporary research methods will change each time.

MFGM 8810 Seminar/Colloquia
[1 credit hour (0, 0, 1)]
One credit hour requirement of these courses will be met by requiring the students to attend a reasonable number (10) of research seminars and colloquia in and outside the college, doctoral dissertation proposal and defenses at the college, etc., during one academic year.
Term Offered: Spring, Fall

MFGM 8840 Manufacturing Strategy
[4 credit hours (4, 0, 0)]
The seminar examines the theory and research related to the formulation and implementation of manufacturing strategy including the strategic planning process and techniques for industry and competitive analysis.
Prerequisites: MGMT 5110 with a minimum grade of D- or ORGD 7110 with a minimum grade of D-

MFGM 8850 Readings And Research In Manufacturing Management
[1-2 credit hours (0, 0, 0-1)]
This individually designed course will provide advanced readings in areas needed by a doctoral student.
Term Offered: Spring, Summer, Fall

MFGM 8860 Advanced Statistics
[3 credit hours (3, 0, 0)]
This course discusses multivariate data analysis. Topics include: principal components analysis, factor analysis, multidimensional scaling, cluster analysis, multiple regression analysis and multivariate analysis of variance. Statistical software packages are used.
Prerequisites: OPMT 5510 with a minimum grade of D-
Term Offered: Summer, Fall

MFGM 8870 Seminar in Statistics/ Research Method
[3 credit hours (3, 0, 0)]
This is an advanced second course in Statistical methods or management science or research methods. This course is designed for individual needs of the student to provide more depth in the research method as required.
Term Offered: Summer

MFGM 8880 Research Methods-Theory Bldg
[3 credit hours (3, 0, 0)]
The course seeks to frame and discuss key issues that arise as social scientists conduct theoretically-relevant empirical research. In the course, the theory building in manufacturing management as well as research process and the literature, tools and techniques associated with each phase of the process will be introduced.
Term Offered: Spring, Fall

MFGM 8890 Advanced Manufacturing Systems
[3 credit hours (3, 0, 0)]
This seminar provides an understanding of the design and management of manufacturing systems. This begins with an understanding of how manufacturing has evolved over time, continues with descriptions of current trends and ideas in manufacturing system design and concludes with discussion of future changes.
Term Offered: Spring, Summer, Fall

MFGM 8900 Field Research
[1-8 credit hours (0, 0, 0-4)]
This course provides students with the opportunity to experience a realistic manufacturing problem and to develop approaches to solving that problem under the supervision of a faculty member.
Term Offered: Spring, Fall

MFGM 8960 Dissertation
[1-8 credit hours (0, 0, 0-8)]
Dissertation
Term Offered: Spring, Summer, Fall

MIME 5060 Manufacturing Engineering
[3 credit hours (3, 0, 0)]
Students integrate machine tools and fabrication processes to optimize the manufacture of a product. Emphasis is on engineering design integrated with economic principles and fabricating methods.
Term Offered: Summer, Fall
MIME 5070 Computer-Aided Manufacturing
[3 credit hours (0, 2, 2)]
The study of machining processes using numerical control machine tools and controllers. Development of programs to machine parts on mills and lathes. Conversion of CAD models to programs through software interfaces.
Term Offered: Fall

MIME 5080 Operations Research I
[3 credit hours (3, 0, 0)]
This course focuses on the mathematical methods of Operations Research and their applications in engineering. Topics include the optimal solution of deterministic and stochastic mathematical models, modeling process, linear programming, the simplex method, duality theory and sensitivity analysis.
Term Offered: Spring, Summer

MIME 5100 Manufacturing Systems Simulation
[3 credit hours (3, 0, 0)]
Discrete and continuous simulation models are used to study queuing networks, manufacturing and related engineering systems. Simulation languages and animation are covered. Statistical inference is used to draw conclusions and to identify the best system.
Term Offered: Spring

MIME 5230 Dynamics Of Human Movement
[3 credit hours (0, 0, 3)]
The goal of this course is for students to be able to describe motions of the human body. Three-dimensional analysis and measurements of human body movements including kinematics, kinetics and energetics of human gait, anthropometry and application to bioengineering and orthopedics will be presented. Euler angles and the screw axis method will be used to describe three-dimensional motions.
Term Offered: Fall

MIME 5240 Experimental Methods in Orthopaedic Biomechanics
[3 credit hours (3, 0, 0)]
Experimental techniques used in orthopedics and in the study of the musculoskeletal system including mechanical testing, experimental and analytical methods for stress analysis, strain gages, methods used in human motion analysis to include motion capture, force plates and EMG’s. Course prerequisites: For undergraduate students: (BIOE 2200 or MIME 1650) and (BIOE 3110 or CIVE 1160) For graduate students: None
Prerequisites: (BIOE 2200 with a minimum grade of D- or MIME 1650 with a minimum grade of D-) and (BIOE 3110 with a minimum grade of D- or CIVE 1160 with a minimum grade of D-)
Term Offered: Spring

MIME 5280 Cad - Finite Element Methods
[3 credit hours (0, 0, 3)]
Numerical solutions of boundary value problems, variational calculus and the principle of minimum potential energy, finite element formulation of two dimensional field and elasticity problems, axisymmetric elements, finite element programming.
Term Offered: Summer, Fall

MIME 5300 Advanced Mechanics Of Materials
[3 credit hours (3, 0, 0)]
Theory of elasticity, plane stress and plane strain problems, yield criteria and failure theories, bending of beams, energy methods, curved flexural members, unsymmetric bending, torsion, shear center and axisymmetrically loaded members.
Term Offered: Fall

MIME 5310 Mechanics Of Composite Materials
[3 credit hours (3, 0, 0)]
Review of elasticity of anisotropic solids, determination of mechanical properties of fiber-reinforced lamina, analysis and performance of laminated composites.
Term Offered: Spring

MIME 5320 Fatigue Of Materials & Structures
[3 credit hours (3, 0, 0)]
Fatigue design methods; fatigue mechanisms; cyclic deformation behavior and material cyclic properties; stress-based and fracture mechanics-based methodologies to fatigue life prediction of smooth and notched members subjected to constant or variable amplitude loadings.
Term Offered: Spring

MIME 5410 Alternative Energy
[3 credit hours (3, 0, 0)]
This course focuses on the technical aspects of sustainable energy technologies, such as wind, solar, biomass, ocean, eaves/tides, geothermal, and hydropower; it also covers issues and applications related to storage, transportation, distribution, industrial usage, and buildings. The course investigates the progress, challenges, and opportunities of each technology to be both technically feasible and economically viable.
Term Offered: Spring

MIME 5420 Modeling and Control of Engineering Systems
[3 credit hours (3, 0, 0)]
In this course students study physical modeling and feedback principles for control of mechanical and electrical systems. Transient response, root locus and frequency response principles are applied to the control of basic mechanical and electrical systems. PID control laws are emphasized.
Term Offered: Spring, Fall

MIME 5430 Advanced Automotive Control Systems
[3 credit hours (3, 0, 0)]
This course covers the major aspects of automotive control, including engine, driveline, and complete vehicle control. This includes applications such as fuel and ignition control, ABS systems, gear-shifting, and vehicle velocity estimation.
Term Offered: Spring, Fall

MIME 5440 Advanced Mechatronics
[3 credit hours (3, 0, 0)]
This course will give students hands-on experience with mechatronic systems and components. The mechatronics lab (NE-1063) will be used to demonstrate several mechatronics systems including inverted pendulums, suites of sensors and motors, and other more complex systems. A major part of the course will be a semester-long project where the students conceive, design, and build a mechatronic device. The components for this device, namely a Raspberry Pi and a variety of sensors and actuators, will be directly funded by the course fee.
Term Offered: Spring, Fall
MIME 5450 Advanced Automation Design
[3 credit hours (3, 0, 0)]
This course will introduce the range of common components used in automation, including actuators, sensors, motors, linear guides, energy chain, industrial robots and light curtains. Students will practice (with feedback) walking through the design process in specifying, sizing, laying out and integrating these components. The course will use some elements of CAD, where CAD experience would be helpful, but this would also be a good opportunity to quickly build competence with CAD.
Term Offered: Spring, Fall

MIME 5460 Advanced MATLAB for Engineers
[3 credit hours (3, 0, 0)]
MATLAB is a useful 'tool' for each engineer to have in their 'toolkit'. This course will review the basics of using MATLAB, identify best-practices (applicable to other programming languages as well), and then move on to examples of more-advanced functionality, e.g. image processing, Simulink control of mechatronic systems, numerically solving differential equations, GPU computation, and optimization. Programming experience would be helpful, but this would also be a good opportunity to rapidly grow programming skills with an easy-to-learn language. A major component of the course is a semester-long project where the student can choose a topic that is most relevant to their research or professional interests, or simply a new area that they're curious about, e.g. mechatronics and programming embedded systems.
Term Offered: Spring, Fall

MIME 5510 Turbomachinery
[3 credit hours (3, 0, 0)]
Theory of energy transfer between fluid and rotor in turbomachines. Design of turbomachine components, axial flow compressors and fans, centrifugal compressors and pumps, axial flow turbines. Design theory and principles, performance analysis, and computational methods
Term Offered: Spring, Fall

MIME 5520 Heating, Ventilating & Air Conditioning
[3 credit hours (3, 0, 0)]
Control of the thermal environment within enclosed spaces including psychometric properties of air heating and cooling, loads and factors affecting human comfort. Analysis of basic heating and refrigeration systems, heat pumps, heaters, utilization of solar energy, humidifiers, energy conservation and controls for systems.
Term Offered: Fall

MIME 5530 Internal Combustion Engines
[3 credit hours (3, 0, 0)]
Term Offered: Spring

MIME 5540 Jet Propulsion
[3 credit hours (3, 0, 0)]
Aerothermodynamic analysis of jet propulsion systems and components: diffuser, compressor, combustor, turbine and nozzle. Investigation of characteristics of ramjets, turbojets, turbofans and turboprops. Design theory and principles, performance analysis, and computational methods
Term Offered: Fall

MIME 5550 Aerodynamics
[3 credit hours (3, 0, 0)]
Fundamentals of aerodynamics, potential flow theory, aerodynamic forces and moments, introduction to numerical analysis, application to external and internal flows, theory of lift for infinite and finite wings, induced drag.
Term Offered: Spring

MIME 5560 Gas Dynamics
[3 credit hours (3, 0, 0)]
Analysis of compressible flow phenomena including shock and detonation waves. Topics include wave propagation, isentropic flow, normal shock waves, oblique shock waves, Prandtl-Meyer flow, and analysis and application to supersonic airfoil theory, inlet, and nozzle.
Term Offered: Spring

MIME 5590 Reliability
[3 credit hours (3, 0, 0)]
Reliability of components and multicomponent systems. Static and dynamic reliability models for both independent and dependent failures. Effects of redundancy. Reliability testing consideration.
Term Offered: Spring, Fall

MIME 5820 Sustainability Analysis and Design
[3 credit hours (0, 0, 3)]
The course is intended to introduce students to sustainability analysis and design in manufacturing and service settings as related to mechanical and industrial engineering. It will cover solid waste minimization for manufacturers, life cycle analysis, and environmentally conscious design.

MIME 5920 Special Projects
[1-6 credit hours (0, 0, 0)]
A special project by the student to investigate or solve an acceptable problem in industrial or mechanical engineering. This course is primarily intended for graduate students interested in mechanical, industrial or manufacturing engineering.
Term Offered: Spring, Fall

MIME 5980 Special Topics
[1-6 credit hours (1-6, 0, 0)]
A special topic at the graduate level in Mechanical, Industrial or Manufacturing Engineering to be offered as a course during a term by a faculty member.
Term Offered: Spring, Summer, Fall

MIME 6000 Advanced Engineering Mathematics I
[3 credit hours (3, 0, 0)]
An advanced course in mathematical analysis for engineers. Topics include matrix methods, eigenvalues and eigenvectors, systems of equations, series representations including FFT, ordinary differential equations and Bessel functions. This course will make use of computer-aided-mathematics techniques and include engineering applications.
Term Offered: Fall
MIME 6100 Advanced Engineering Mathematics II
[3 credit hours (3, 0, 0)]
Partial differential equations for engineering applications including elliptic, parabolic, hyperbolic differential and non-linear systems of equations. Solution procedures include separation of variables, Laplace transform methods, solutions using complex analysis including conformal mapping and numerical methods.
Prerequisites: MIME 6000 with a minimum grade of D-
Term Offered: Spring

MIME 6200 Advanced Dynamics
[3 credit hours (3, 0, 0)]
Study of dynamics of a system of particles and rigid bodies using Newtonian and Lagrangian Mechanics including multi-body systems. Principles of nonlinear system dynamics and stability.
Term Offered: Spring

MIME 6210 Advanced Mechanical Vibrations
[3 credit hours (3, 0, 0)]
Advanced concepts in normal mode theory for discrete systems and vibration of continuous systems such as bars, beams and plates.
Term Offered: Spring

MIME 6300 Continuum Mechanics
[3 credit hours (3, 0, 0)]
A unified approach to the study of the mechanics of continuous media; analysis of tensors; kinematics of material media; analysis of deformation and stress; the mathematical statement of the laws of conservation of mass, momentum and energy; formulation of the mechanical constitutive equations for various classes of solids and fluids.
Term Offered: Spring, Fall

MIME 6350 Elasticity
[3 credit hours (3, 0, 0)]
Review of tensor analysis, analysis of stress and strain, three dimensional equations of elasticity, plane problems in rectangular Cartesian and polar coordinates.
Term Offered: Fall

MIME 6360 Plasticity
[3 credit hours (3, 0, 0)]
Review of elastic stress-strain relations, analysis of strain rate and concept of stress rate, criteria of yielding and rules of plastic flow, elastoplastic bending and torsion, theory of slipline fields, mechanics of metal forming processes.
Term Offered: Spring

MIME 6380 Fracture Mechanics
[3 credit hours (0, 0, 3)]
Principles of fracture mechanics and its applications to the prevention of fractures in components and structures, linear elastic and elas- plastic fracture mechanics, fracture mechanisms, fracture toughness, applications to fatigue crack propagation.
Term Offered: Fall

MIME 6440 Computational Fluid Dynamics I
[3 credit hours (3, 0, 0)]
Term Offered: Fall

MIME 6450 Experimental Fluid Mechanics
[3 credit hours (0, 2, 2)]
Digital data acquisition and analysis; limitations and interpretation of physical measurements; sources of errors and difficulties in experimental technique; advanced experimental methods for static and dynamic measurements in thermal systems and fluid flow.
Term Offered: Spring

MIME 6460 Intermediate Fluid Mechanics and Heat Transfer
[3 credit hours (3, 0, 0)]
Development of the Navier-Stokes and the convective equations. Analysis of boundary-layer flows including similarity solutions, potential flows as well as convective heat transfer topics. This course is intended to provide a solid theoretical foundation in fluid mechanics and convective heat transfer for graduate students, preparing them for more specialized courses in Heath Transfer and Fluid Mechanics.
Term Offered: Fall

MIME 6540 Computational Fluid Dynamics II
[3 credit hours (3, 0, 0)]
Prerequisites: MIME 6440 with a minimum grade of D-
Term Offered: Spring

MIME 6570 Advanced Fluid Mechanics
[3 credit hours (3, 0, 0)]
Review of general governing equations, stability of laminar flows, transition to turbulence, incompressible turbulent flows, compressible boundary layer flow, and a selected topic chosen with the class.
Prerequisites: MIME 6460 with a minimum grade of D-
Term Offered: Spring

MIME 6580 Advanced Heat Transfer
[3 credit hours (3, 0, 0)]
Analytical and numerical methods for steady and transient heat conduction, convective heat transfer in boundary layers, models for external and internal forced flows, free flows, influence of turbulence, and phase change.
Prerequisites: MIME 6460 with a minimum grade of D-
Term Offered: Spring
MIME 6590 Advanced Gas Dynamics
[3 credit hours (3, 0, 0)]
One-dimensional steady flows of perfect gases: fundamental laws and basic equations for subsonic, transonic, and supersonic processes. Multidimensional flows: exact solutions; linearized flows; characteristics; supersonic nozzle design. Unsteady one-dimensional flows with discontinuities. Measurements in compressible flows. A selected topics in viscous, heat conducting compressible flows and boundary layers.
Prerequisites: MIME 4560 with a minimum grade of D-
Term Offered: Spring

MIME 6720 Design Of Experiments
[3 credit hours (3, 0, 0)]
Design and analysis of experiments including analysis of variance and regression analysis. Factorial, blocked and nested models are considered together with appropriate estimation and post ANOVA tests.
Term Offered: Spring

MIME 6810 Assembly And Joining Processes
[3 credit hours (3, 0, 0)]
This course is comprised of two parts: joining processes and assembly systems. Commonly used joining methods, such as welding, mechanical fastening and adhesion are discussed. General principles of assembly are presented with extensive use of automobile assembly as an example.
Term Offered: Fall

MIME 6900 Independent Research
[1-16 credit hours (0, 0, 0)]
Research credit hours toward the Master of Science degree in Mechanical, Industrial and Manufacturing Engineering Department. Students are to use the section number of their thesis/dissertation adviser.
Term Offered: Spring, Summer, Fall

MIME 6910 Engineering Analysis of Smart Material Systems
[3 credit hours (3, 0, 0)]
In this course the students will study the fundamental concepts behind different types of active materials. The course emphasizes current research topics and engineering applications of active materials.

MIME 6920 Special Projects
[1-6 credit hours (0, 0, 0)]
A special project by the student to investigate or solve an acceptable problem in industrial or mechanical engineering. This course is primarily intended for graduate students interested in mechanical, industrial or manufacturing engineering.
Term Offered: Spring, Summer, Fall

MIME 6930 Graduate Seminar
[0 credit hours (0, 0, 0)]
This is a seminar for graduate students in Mechanical, Industrial and Manufacturing Engineering. Topics include orientation to the graduate program and special topics by speakers from industry and other universities. Credit does not apply toward a graduate degree.
Term Offered: Spring, Fall

MIME 6960 Graduate Research and Thesis
[1-9 credit hours (0, 0, 0)]
Masters thesis research.
Term Offered: Spring, Summer, Fall

MIME 6980 Special Topics
[1-6 credit hours (1-6, 0, 0)]
A special topic at the graduate level in Mechanical, Industrial or Manufacturing Engineering to be offered as a course during a term by a faculty member.
Term Offered: Spring, Summer, Fall

MIME 6990 Independent Study
[1-6 credit hours (0, 0, 0)]
An independent study by the student to investigate or solve an acceptable problem in industrial or mechanical engineering. This course is primarily intended for graduate students in mechanical, industrial or manufacturing engineering.
Term Offered: Fall

MIME 7550 Aerodynamics
[3 credit hours (3, 0, 0)]

MIME 7690 Reliability
[3 credit hours (3, 0, 0)]

MIME 8000 Advanced Engineering Mathematics I
[3 credit hours (3, 0, 0)]
An advanced course in mathematical analysis for engineers. Topics include matrix methods, eigenvalues and eigenvectors, systems of differential equations, series representations including FFT, ordinary differential equations and Bessel functions. This course will make use of computer-aided-mathematics techniques and include engineering applications.
Term Offered: Fall

MIME 8100 Advanced Engineering Mathematics II
[3 credit hours (3, 0, 0)]
Partial differential equations for engineering applications including elliptic, parabolic, hyperbolic differential and non-linear systems of equations. Solution procedures include separation of variables, Laplace transform methods, solutions using complex analysis including conformal mapping and numerical methods.
Prerequisites: MIME 8000 with a minimum grade of D-
Term Offered: Spring

MIME 8120 Advanced Measurement Systems
[3 credit hours (2, 2, 0)]
Sensor selection, data acquisition system selection, evaluation of system response, digital sampling theory, statistical data analysis, space-time correlations, spectral analysis, analog and digital signal conditioning, and static and dynamic measurements.
Term Offered: Fall

MIME 8200 Advanced Dynamics
[3 credit hours (3, 0, 0)]
Study of dynamics of a system of particles and rigid bodies using Newtonian and Lagrangian Mechanics including multi-body systems. Principles of nonlinear system dynamics and stability.
Term Offered: Spring

MIME 8210 Advanced Mechanical Vibrations
[3 credit hours (3, 0, 0)]
Advanced concepts in normal mode theory for discrete systems and vibration of continuous systems such as bars, beams and plates.
Term Offered: Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Term Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 8300</td>
<td>Continuum Mechanics</td>
<td>[3, 0, 0]</td>
<td>Spring, Fall</td>
</tr>
<tr>
<td>MIME 8350</td>
<td>Elasticity</td>
<td>[3, 0, 0]</td>
<td>Fall</td>
</tr>
<tr>
<td>MIME 8360</td>
<td>Plasticity</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8380</td>
<td>Fracture Mechanics</td>
<td>[3, 0, 0]</td>
<td>Fall</td>
</tr>
<tr>
<td>MIME 8440</td>
<td>Computational Fluid Dynamics I</td>
<td>[3, 0, 0]</td>
<td>Fall</td>
</tr>
<tr>
<td>MIME 8450</td>
<td>Experimental Fluid Mechanics</td>
<td>[3, 0, 0]</td>
<td>Fall</td>
</tr>
<tr>
<td>MIME 8460</td>
<td>Intermediate Fluid Mechanics and Heat Transfer</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8464</td>
<td>Advanced Fluid Mechanics</td>
<td>[3, 0, 0]</td>
<td>Spring, Fall</td>
</tr>
<tr>
<td>MIME 8466</td>
<td>Advanced Heat Transfer</td>
<td>[3, 0, 0]</td>
<td>Fall</td>
</tr>
<tr>
<td>MIME 8540</td>
<td>Computational Fluid Dynamics II</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8570</td>
<td>Advanced Gas Dynamics</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8580</td>
<td>Advanced Heat Transfer</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8590</td>
<td>Advanced Gas Dynamics</td>
<td>[3, 0, 0]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8720</td>
<td>Design Of Experiments</td>
<td>[0, 0, 3]</td>
<td>Spring</td>
</tr>
<tr>
<td>MIME 8810</td>
<td>Assembly And Joining Processes</td>
<td>[3, 0, 0]</td>
<td>Spring, Summer, Fall</td>
</tr>
<tr>
<td>MIME 8900</td>
<td>Independent Research</td>
<td>[0, 0, 0]</td>
<td>Spring, Summer, Fall</td>
</tr>
</tbody>
</table>
MIME 8910 Engineering Analysis of Smart Material Systems
[3 credit hours (3, 0, 0)]
In this course the students will study the fundamental concepts behind different types of active materials. The course emphasizes current research topics and engineering applications of active materials.

MIME 8920 Special Projects
[1-6 credit hours (0, 0, 0)]
A special project by the student to investigate or solve an acceptable problem in industrial or mechanical engineering. This course is primarily intended for graduate students interested in mechanical, industrial or manufacturing engineering.

Term Offered: Spring, Summer, Fall

MIME 8930 Graduate Seminar
[0 credit hours (0, 0, 0)]
This is a seminar for graduate students in Mechanical, Industrial and Manufacturing Engineering. Topics include orientation to the graduate program and special topics by speakers from industry and other universities. Credit does not apply toward a graduate degree.

Term Offered: Spring, Fall

MIME 8960 Dissertation
[1-16 credit hours (0, 0, 0)]
Doctoral dissertation research credit hours for students in the Mechanical, Industrial and Manufacturing Engineering Department. Students are to use the section number of their dissertation adviser.

Term Offered: Spring, Summer, Fall

MIME 8980 Special Topics
[1-6 credit hours (1-6, 0, 0)]
A special topic at the graduate level in Mechanical, Industrial or Manufacturing Engineering to be offered as a course during a term by a faculty member.

Term Offered: Spring, Summer, Fall

MIME 8990 Independent Study
[1-6 credit hours (0, 0, 0)]
An independent study by the student to investigate or solve an acceptable problem in industrial or mechanical engineering. This course is primarily intended for graduate students in mechanical, industrial or manufacturing engineering.

Term Offered: Summer, Fall