DOCTOR OF PHILOSOPHY IN
BIOMEDICAL ENGINEERING

Mohamed Samir Hefzy, Program Co-Director from the College of Engineering
Dorothea Sawicki, Program Co-Director from the College of Medicine

The Doctor of Philosophy in Biomedical Engineering at the University of Toledo is a joint program between The College of Engineering and The College of Medicine. The program is open to qualified students with either degrees in engineering or in science fields such as biology, chemistry, physics, mathematics, or computer science. Since prospective students have a variety of backgrounds, the requirements for admission vary.

The degree is conferred based on high scholarly attainment in the field of biomedical engineering. This program incorporates a formal entrepreneurship component in collaboration with the College of Business and Innovation (COBI) to encourage PhD students to commercialize the biomedical technology they may develop as part of their dissertation research. The curriculum also provides a PhD program for MD students from undergraduate engineering backgrounds that are interested in pursuing a dual degree and careers as physician scientists.

In addition to coursework requirements, continuation within the Ph.D. program requires that the student pass two major examinations:

1. the Ph.D. Qualifying Exam and
2. the defense of the Dissertation Research Proposal.

Completion of the Ph.D. degree requires the writing and defense of the Dissertation and the writing of a business commercialization plan and/or publication of the research findings.

Curriculum

A minimum of 90 semester credit hours of approved graduate coursework are required beyond the B.S. degree. For students directly admitted into the Ph.D. program with a B.S. degree, the minimum coursework requirements specified below must be satisfied.

- Register and attend a weekly seminar series in the College of Engineering or the College of Medicine and Life Sciences. Registration and attendance is mandatory every semester.
- Complete 13 hours of core coursework.
- Complete 12 hours of engineering/life sciences elective coursework.
- Complete 9-6 hours of entrepreneurship elective coursework.
- Complete 15 hours of other engineering/science elective coursework.
- Complete at least 45 semester hours of dissertation research. A student can register for dissertation research only after passing the Qualifying Exam.

In order to be awarded the PhD in Biomedical Engineering degree, the student must have at least a B average (a minimum GPA of 3.0/4.0) for all graduate course credits in the program of study as well as for the entire graduate transcript. Only credit hours obtained with a letter grade of "C" or higher, or an "S" grade for the limited number of classes offered on a satisfactory or unsatisfactory basis, will fulfill degree requirements.

The PhD curriculum requirements are designed to allow students maximum flexibility in selecting coursework appropriate for the research area. The curriculum for the PhD in Biomedical Engineering centers on several core course requirements in mathematics, engineering, and the life sciences. Additional technical courses are taken as needed to support the research area. In addition to the technical content, students take two courses from the College of Business on intellectual property and research commercialization, and develop a business plan to commercialize their dissertation research. Individual course selections are made by the student and the student’s research advisor and/or dissertation committee.

The core courses include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Physiology</td>
<td>A math course at the 7000 or 8000 level as a prerequisite for the mathematics core course</td>
<td></td>
</tr>
<tr>
<td>MIME 8100</td>
<td>Advanced Engineering Mathematics II or MATH 8510</td>
<td></td>
</tr>
<tr>
<td>INDI 8020</td>
<td>On Being a Scientist</td>
<td></td>
</tr>
<tr>
<td>BMSP 8330</td>
<td>Curr Prob Res App Protein Str</td>
<td></td>
</tr>
<tr>
<td>BMSP 8340</td>
<td>Curr Prob Res Genes/Genome</td>
<td></td>
</tr>
<tr>
<td>BMSP 8350</td>
<td>Cell Biology & Signaling</td>
<td></td>
</tr>
<tr>
<td>BMSP 8360</td>
<td>Curr Prob Cell Membranes</td>
<td></td>
</tr>
<tr>
<td>MPHY 8040</td>
<td>Diag Radiological Physics (or equivalent)</td>
<td></td>
</tr>
</tbody>
</table>

Students emphasizing the biological sciences must complete at least 5 credit hours of biomedical sciences program (BMSP) courses.

The PhD in Biomedical Engineering includes an entrepreneurial component which is nurtured through close interaction with the COBI. Each student in this degree program completes the course EFSB 6590 as part of the approved elective coursework. Students may also elect to complete the additional graduate level COBI course EFSB 6690.

Qualifying Examination

The Qualifying Examination is an oral exam used to assess a student’s critical thinking skills and understanding of the foundational material essential for success in the doctoral program. For students accepted into the Ph.D. program, the Ph.D. Qualifying Exam will occur after the completion of the required first year coursework comprising the core courses in physiology, mathematics and the courses from the College of Medicine and Life Sciences. The students rotate through 3 different courses in physiology, mathematics and the courses from the College of Business on intellectual property and research commercialization. Each testing topic lasts no more than 25 minutes; each student is asked questions of increasing difficulty until the perimeter of the student’s knowledge is determined. All students are tested on the common areas of mathematics and physiology. Each student selects the third test segment from the three broad specialization areas of biomechanics, bioprocessing/molecular & cellular biology, and bioelectrical systems.

Following the finalization of the examination outcomes, the Program Co-Directors immediately notify the students tested in writing of the testing outcome. If retesting is required, the student is also informed of the date of testing and the topic(s) to be retested. Students who do not receive an
outright pass on the first examination have one opportunity to retest with a passing score or are dismissed from the program.

Ph.D. Dissertation Committee

Following the successful completion of the Qualifying Examination, students are expected to form their dissertation committees with the advice and consent of their research advisors. Each committee must consist of at least five UT Graduate Faculty. Affiliated Faculty must constitute the majority on each committee. Each committee must include at least one Affiliated Faculty member from the College of Engineering, one from the College of Medicine and Life Sciences, and one external faculty member usually from the College of Business and Innovation.

Doctoral Candidacy

All doctoral students must meet the following requirements before being admitted to doctoral candidacy:

- Pass the Biomedical Engineering Qualifying Examination
- Select a dissertation committee
- Obtain at least a 3.0/4.0 for all graduate level coursework

Prior to initiating dissertation research, each student must complete and file a Graduate Research Advisory Committee Approval and Assurances Form (GRAD) with the College of Graduate Studies. Students must complete this form and receive the required approvals prior to beginning any research for a thesis involving humans, animals, radiation, or biohazardous substances.

Dissertation Research Proposal Examination

The dissertation research proposal is a document written by the student describing the research to be undertaken for the dissertation. The oral examination consists of the presentation of the written proposal by the student to the dissertation committee in a closed forum. The dissertation research proposal must be written and presented within one calendar year of passing the Qualifying Examination. A student may request an extension of up to one additional calendar year with the approval of the faculty advisor.

The dissertation research proposal should describe the background, goals, hypotheses, and general methods of the proposed research. The proposal should be structured in a manner similar to an NIH grant application. Copies of the proposal must be given to all members of the dissertation committee at least two weeks before the oral presentation. The dissertation proposal must then be formally presented to the dissertation committee and defended to their satisfaction.

Entrepreneurship Component

Each student will integrate his/her COBI coursework with his/her research discoveries and submits a formal business plan to commercialize the dissertation research. This plan must be presented and approved by the dissertation committee prior to the final approval of the dissertation. The committee, which includes one faculty member from the COBI, may seek the advice of others in evaluating the submitted plan.

In recognition of the fact that some students will focus on more fundamental scientific research which may have limited commercial value, a student may request from the dissertation committee a substitution of the business plan by a research equivalent of this requirement. An example of such an equivalent requirement would be evidence of submission and/or publication of two peer-reviewed journal articles.

Ph.D. Dissertation and Defense

When the dissertation research is completed to the satisfaction of the faculty advisor, the student prepares a complete draft of the Ph.D. dissertation. The student must submit the final draft of the dissertation to each committee member for his or her critical evaluation and review at least two (2) weeks prior to the defense. The dissertation defense consists of a 45 minute formal oral presentation by the student, followed by open and closed question sessions. The dissertation committee then votes, and a majority of the committee must concur on the final decision. If the student does not pass the dissertation defense, then the dissertation committee, in consultation with the Program Director, will decide a course of future action.

Time Limit

Doctoral candidacy automatically terminates five (5) years after admission to candidacy. All requirements for the doctoral degree must be completed within seven (7) years of admission to the Ph.D. program (registration for first doctoral level class). To continue beyond the time limit, a written request for extension to the research advisor and the two Co-Directors of the Biomedical Engineering Committee must be submitted and approved. Upon approval through the required channels of The College of Engineering, the extension request must be forwarded to The College of Graduate Studies for final review and approval.